Design of Experiments and Big Data Analytics for Energy Efficient Buildings

Pragnesh Patel, Kwai Wong, Joshua New, Jibonananda Sanyal, George Ostrouchov and Mark Adams

NICS, UTK, ORNL
Outline

• Background
• Simulation & Experimental Design
• Statistical techniques for sensitivity analysis
• Analysis results
• Workflow system
• Conclusion
• Future work
Energy is the Defining challenge of our time

• Building in U.S.
 – 40% of Primary energy/carbon
 – 73% of electricity, 34% of gas

• Building in China.
 – 60% of urban building floor space in 2030 has yet to be built

• Building in India.
 – 67% of all building floor space in 2030 has yet to be built

Global energy consumption will increase 50% by 2030
Goals of ECSS project

• Port EnergyPlus simulation code on XSEDE resources

• Integration of EnergyPlus into openDIEL to allow to manage and run multiple instances of EnergyPlus simulation.

• Implementation of experimental design framework

• Implementation of sensitivity analysis tool

• Fast and portable workflow solution that leverages existing workflow mechanisms
EnergyPlus

- It is a whole building energy simulation program that engineers, architects, and researchers use to model both energy consumption—for heating, cooling, ventilation, lighting, and plug and process loads—and water use in buildings.

- It contains many of the recent building dynamic simulation algorithms.

- It has been transitioning to C (~750,000 lines) from FORTRAN.

- It provides large number of built-in HVAC and lighting control strategies and an extensible runtime scripting system for user-defined control.

- Standard summary and detailed output reports as well as user definable reports with selectable time-resolution from annual to sub-hourly, all with energy source multipliers.

- https://energyplus.net
Inputs

• Standard input file to describe a building has on the order of 3,000 lines.

• Domain experts pick out the most useful parameters that could affect building consumption and meaningfully discretize values for those parameters.

• The most useful group consisted of 156 parameters.

• Need to turn on/off nobs (or Min/Max values)

• This resulted in GBs of data for 1 building type and 1 climate zone (e.g. Atlanta)
Our motivation

• Simulation plays a big role in understanding the behavior of building envelopes

• Parametric analysis determinants
 – DOE 2.1 and EnergyPlus
 – OpenStudio’s parametric tool

• Uncertainty in two types of buildings
 – Building envelope’s thermal conductivity properties
 • 156 parameters
 – Sensitivity analysis of stand-alone retail building
 • 20 parameters
 • Fractional factorial design

• 16 different building types and 16 types of climate zones.

• Datasize depends on selection of Hourly, Daily, Weekly, Monthly parameters
Autotune
Automatic Calibration of Simulation to Data
Experimental setup 1

• ZEBRAAlliane homes and Markov Order Design

• Home has energy efficient technologies
 – Standing seam metal roof with infrared reflective pigments to boost solar reflectance
 – ENERGY STAR appliances
 – Triple-pane low emittance Argon-filled windows
 – Compact fluorescent lighting
 – Horizontal ground loop installation that leverages foundation and utility excavations
 – High-efficiency water-to-air heat pump for space conditioning
 – High-efficiency water-to-water heat pump for hot water heating
 – Emulated occupancy
Markov sampling

- ZEBRAAlliane homes and Markov Order Design
- 156 parameters determined by experts
- Brute force
 - All possible combinations of min and max sizes (~12,000 simulations, 143 GB of data)

- Markov Order 1
 - 299 Simulations
 - 3.9 GB

- Markov Order 2
 - 28,000 simulations approximately
 - 450 GB
Experimental setup 2

• DOE’s reference Stand-Alone Retail building

• Fractional Factorial Design

• Factors and responses
 – Input parameters and output variables

• Effect sizes of factors

• Fractional design expression

\[L^{k-p} \]

 – \(L \): number of factor (parameter)
 – \(k \): number of factors (parameters) investigated
 – \(p \): size of fraction of full factorial used (degree of confoundedness)
Fractional factorial designs

• Sparsity of effects principle

• Resolution of fractional factorial designs
 – Ability to separate main effects and low-order interactions from one another
 – Most common are III, IV and V
 – Resolution IV: Estimate main effects unconfounded by two-factor interactions, two-factor interaction effects may be confounded with other two-factor interactions

• Regular design, power of 2

• Non-regular designs are design where run size is a multiple of 4, which introduces partial aliasing
Fractional factorial designs

• 20 factors and resolution VI design
 – 1024 simulation runs
 – Resolution VI designs alias main effects (single factors) with order five or higher interactions and alias two-factor interactions with order four or higher interactions

• Generation: FrF2 package

• For more than 2 levels, response surface methodology is useful
 – 2^{nd} degree polynomial
 – Identify factors affecting response variable
 – Follow-up with more complicated designs
<table>
<thead>
<tr>
<th>Class</th>
<th>Name</th>
<th>Short Name</th>
<th>Field</th>
<th>Default</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule: Compact</td>
<td>CLGSETP_SCH</td>
<td>SC_CL6</td>
<td>Field 6</td>
<td>23</td>
<td>16.1</td>
<td>29.9</td>
</tr>
<tr>
<td></td>
<td>HTGSETP_SCH</td>
<td>SC_HT4</td>
<td>Field 4</td>
<td>16</td>
<td>11.2</td>
<td>20.8</td>
</tr>
<tr>
<td></td>
<td>HTGSETP_SCH</td>
<td>SC_HT6</td>
<td>Field 6</td>
<td>22</td>
<td>15.4</td>
<td>28.6</td>
</tr>
<tr>
<td>Lights</td>
<td>Back_Space_Lights</td>
<td>Li_BaSp</td>
<td>Watts per Zone Floor Area</td>
<td>9</td>
<td>6.3</td>
<td>11.7</td>
</tr>
<tr>
<td></td>
<td>Core_Retail_Lights</td>
<td>Li_CoRt</td>
<td>Watts per Zone Floor Area</td>
<td>18.5</td>
<td>12.95</td>
<td>24.05</td>
</tr>
<tr>
<td></td>
<td>Front_Entry_Lights</td>
<td>Li_FrEn</td>
<td>Watts per Zone Floor Area</td>
<td>12</td>
<td>8.4</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>Front_Retail_Lights</td>
<td>Li_FrRt</td>
<td>Watts per Zone Floor Area</td>
<td>18.5</td>
<td>12.95</td>
<td>24.05</td>
</tr>
<tr>
<td></td>
<td>Point_Of_Sale_Lights</td>
<td>Li_POS</td>
<td>Watts per Zone Floor Area</td>
<td>18.5</td>
<td>12.95</td>
<td>24.05</td>
</tr>
<tr>
<td>Electric Equipment</td>
<td>BackSpace_MiscPlug</td>
<td>Eq_BaSp</td>
<td>Watts per Zone Floor Area</td>
<td>8.2</td>
<td>5.74</td>
<td>10.66</td>
</tr>
<tr>
<td></td>
<td>CoreRetail_MiscPlug</td>
<td>Eq_CoRt</td>
<td>Watts per Zone Floor Area</td>
<td>3.3</td>
<td>2.31</td>
<td>4.29</td>
</tr>
<tr>
<td></td>
<td>FrontRetail_MiscPlug</td>
<td>Eq_FrRt</td>
<td>Watts per Zone Floor Area</td>
<td>3.3</td>
<td>2.31</td>
<td>4.29</td>
</tr>
<tr>
<td></td>
<td>PointOfSale_MiscPlug</td>
<td>Eq_POS</td>
<td>Watts per Zone Floor Area</td>
<td>22</td>
<td>15.4</td>
<td>28.6</td>
</tr>
<tr>
<td>ZoneInfil: FlowRate</td>
<td>Back_Space_Infil</td>
<td>ZF_BaSp</td>
<td>Flow per Ext Surface Area</td>
<td>0.00033</td>
<td>0.00023</td>
<td>0.000429</td>
</tr>
<tr>
<td></td>
<td>Front_Entry_Infil</td>
<td>ZF_FrEn</td>
<td>Air Changes per Hour</td>
<td>1.1</td>
<td>0.77</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td>Front_Entry_Infil</td>
<td>ZF_FrRtA</td>
<td>Constant Term Coefficient</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Front_Retail_Infil</td>
<td>ZF_FrRtC</td>
<td>Flow per Ext Surface Area</td>
<td>0.00033</td>
<td>0.00023</td>
<td>0.000429</td>
</tr>
<tr>
<td></td>
<td>Point_Of_Sale_Infil</td>
<td>ZF_POS</td>
<td>Flow per Ext Surface Area</td>
<td>0.00033</td>
<td>0.00023</td>
<td>0.000429</td>
</tr>
<tr>
<td>DsgnSpec: OutdAir</td>
<td>SZ DSOA Back_Space</td>
<td>DS_BaSp</td>
<td>Outdr Airflow per Area</td>
<td>0.0008</td>
<td>0.00056</td>
<td>0.00104</td>
</tr>
<tr>
<td></td>
<td>SZ DSOA Core_Retail</td>
<td>DS_CoRt</td>
<td>Outdr Airflow per Area</td>
<td>0.00175</td>
<td>0.00122</td>
<td>0.002275</td>
</tr>
<tr>
<td>Sizing: Parameters</td>
<td>Sizing:Parameters</td>
<td>Sz_Heat</td>
<td>Heating Sizing Factor</td>
<td>1.25</td>
<td>0.875</td>
<td>1.625</td>
</tr>
</tbody>
</table>

Sensitivity analysis

• Analysis of variance
 – Model containing main effects and all two factor interactions

• Simulation time of 1 year and use of monthly totals in the analysis
 – 12 measurements used in a repeated measures multivariate analysis
 – More powerful than treating each month as separate analysis of variance.
Sensitivity analysis

• 20 factors, all 2-way interactions model fit to 1024 observations, we still have 778 degrees of freedom left for the error term

• Strong significance with Pillai statistic (below 0.0001)
 – All factors except
 • LightsFront Entry
 • Zone infiltration flow rate: Air changes per hour, Constant term coefficient

• 380 possible 2 way interactions
 – 58 were significant at <0.01
 – Effect size is important
 – Charts terms with over 1,000 KWh effect
Factors with largest effects on electricity use
Factors with largest effects on electricity use (2)

Reference:
Factors with largest effects on gas use

Factors with largest effects on gas use
Monthly Electric and Gas energy use

Variables

Monthly Electric and Gas energy use

Monthly Electric and Gas energy use
Conclusion

• Sampling of 156 parameters for residential building
 – More time and data

• Sampling of 20 parameters on stand-alone retail
 – Fractional factorial
 – Analysis of variance

• Insight
 – Practical issue in experimental design
 – Analytical approaches in understanding thermal properties of building envelopes

• Future work
 – Parallel analysis using Programming with Big Data in R (pbdR)
 – For All 16 types of building and 16 climate zones
 – In Situ Analysis
openDIEL

- openDIEL (open Distributive Interoperable Executive Library) aims to facilitate communication between user-created loosely coupled simulations.

- Loosely coupled simulations are mostly serial programs that rely on data points from other simulations; these simulations get their input from and send output to other simulations.

- The openDIEL communicates through a tuple server-based method, and now is able to communicate large chunks of contiguous memory more efficiently through direct communication.

- The organization of these simulations is organized and facilitated by the workflow implementation of the openDIEL.
openDIEL organization
Direct Communication

- Wrappers around MPI to communicate large chunks of data
- Functions IEL_send (nonblocking), IEL_recv (blocking) and IEL_move (blocking)
- Uses a set of shared boundary conditions in a conceptual grid, each process having access to a different section of this grid
- Movement parameters specify point-to-point transfer
Direct Communication

Configuration file using direct communication

Example: IEL Communication Code

```c
if (mype < npes-1)
    IEL_move(exec_info, myRank + 1);
// Exchange data with the process above
if (myRank != 0)
    IEL_move(exec_info, myRank - 1);
```

Example: MPI Communication Code

```c
if (myRank <= npes-1)
    MPI_Ssend(&NRL[1], NC, MPI_FLOAT, npes+1, DOWN, MPI_COMM_WORLD);
if (myRank != 0)
    MPI_Ssend(&t[1][1], NC, MPI_FLOAT, mype-1, UP, MPI_COMM_WORLD);
```
Direct Communication

Process 1

- Modify boundaries
- IEL_send
- Calculations
- IEL_recv
- Calculations

Process 2

- IEL_Recv
- Modify boundaries
- IEL_send
- Calculations
openDIEL and EnergyPlus with Analysis

EnergyPlus – (Single Program Multiple Data)
EnergyPlus is a program developed by the DOE to model the power consumption of buildings. The openDIEL workflow engine is used to run EP7, Readvars, and an R analysis script (along with preprocessing code of simulation output) to perform statistical analysis on the dataset as a whole.
openDIEL and Energyplus with Analysis

One group is used for this case, containing EnergyPlus, Readvars, and R Analysis (a module that runs arbitrary R scripts).

Each EP7/Readvars module executes in a separate directory on a different set of input files.

Once EP7 is complete, Readvars extracts the relevant information from the output files.

After this data is collected, an R script is used to perform statistical analysis on the produced data.
openDIEL and Energyplus with Analysis

workflow:
{

 groups:
 {
 ep7-readvars:
 {
 order=("modep7", "modreadvars")
 }
 RAnalysis:
 {
 order=("RAnalysis")
 }
 }
}
openDIEL : Work in progress

Workflow/Tuple Server Control Module
The tuple server will be expanded to read a makefile-like list of dependencies and dynamically schedule tasks using the available processes.

ModMaker
The ModMaker toolset will be ported from bash to python and made available on the Python Package Index (PyPi) for an easy, one line installation.

Tuple Server Scaling
The tuple server will be expanded to allow multiple processes to operate as a single server (currently each processes operates separately).

openDIEL GUI
The openDIEL GUI will be extended to expose openDIEL features in a more user friendly package.
References

• http://web.eecs.utk.edu/~new/presentations/2014_Purdue_Uncertainty.pdf
• EnergyPlus: https://energyplus.net
• FrF2: https://cran.r-project.org/web/packages/FrF2
• OpenDIEL: http://cfdlab.utk.edu/opendiel
• R: https://www.r-project.org
• pbdR: http://r-pbd.org
Thanks to Joshua New, Jibonanada Sanyal, Kwai Wong, George Ostrououchov and Mark Adams