Introducing Bridges-2

Shawn T. Brown, PhD
Director, Pittsburgh Supercomputing Center
PI & Project Director, Bridges-2
Acquisition and operation of *Bridges*, *Bridges-AI*, and *Bridges-2* are made possible by the National Science Foundation:

NSF Award OAC-1928147 ($12.0M awarded to date):

Bridges-2: Scalable Converged Computing, Data, and Analytics for Rapidly Evolving Science and Engineering Research

Hewlett Packard Enterprise is delivering *Bridges-2*

Bridges-2 will be deployed in Q4 2020.
The following information is subject to change.
To Learn More and Participate

<table>
<thead>
<tr>
<th>Action</th>
<th>Website/Link</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watch the Bridges-2 website for updates!</td>
<td>http://psc.edu/bridges-2</td>
</tr>
<tr>
<td>Sign up for the Early User Program</td>
<td>https://psc.edu/bridges-2/eup-apply</td>
</tr>
<tr>
<td>Let us know what software (applications, libraries, frameworks) you’d like us to install.</td>
<td>https://psc.edu/bridges-2/software-request</td>
</tr>
<tr>
<td>Let us know what community datasets you’d like us to install.</td>
<td>https://psc.edu/bridges-2/dataset-request</td>
</tr>
<tr>
<td>XSEDE User Portal, to get an XSEDE username and to apply for free allocations on Bridges-2</td>
<td>https://portal.xsede.org/</td>
</tr>
<tr>
<td>Contact us with additional questions, input, or requests (starting June 1)</td>
<td>bridges2@psc.edu</td>
</tr>
</tbody>
</table>
Driving Rapidly Evolving Science and Engineering

- **HPC & HTC**
 - Simulation and Modeling
 - Ease of use, familiar software, interactivity, productivity

- **HPAI and AI-enhanced simulation and modeling**

- **Community Data, Big Data as a Service**

- **HPC + AI + data, workflows, heterogeneous, cloud**
An Ecosystem for Rapidly Evolving, Data-Intensive Science & Engineering

Connecting new communities to advanced research computing.

Converged computation and data ecosystem to empower users to explore new ways of doing computing.

- 2,100 projects
- 16,000 users
- 800 institutions
- 122 fields of study
- 130 education allocations

For more information: https://www.psc.edu/bridges

Pioneered HPC+AI+Big Data
Bridges-AI expansion
Intel OPA first installation
Has become an ecosystem

BRIDGES-2
Converged HPC, AI, and Big Data

Provides transformative capability for rapidly evolving, computation-intensive and data-intensive research, creating opportunities for collaboration and convergence research.

Coming Q4 2020

More Science:
- Approximately 3x larger than Bridges

Faster Computing:
- Latest AMD EPYC processors

Faster Storage:
- Fast flash array and tiered data management

Smarter Science:
- Designed for Full System AI and data-centric computing

Scalable:
- Interoperability with cloud and campus resources

Award OAC-1445606
Award OAC-1928147

NSF
Hewlett Packard Enterprise
Intel
NVIDIA

For more information: https://www.psc.edu/bridges-2

Carnegie Mellon University
PSC
University of Pittsburgh
Application Areas: Examples

Gene Expression

Advancing Digital Pathology with AI

Mapping the Human Body at Cellular Resolution

Developing Smart Cities

Workflows for CMS @ HL-LHC

Improving Severe Storm Prediction

Understanding Immunity

C. M. Quine et al., *Dynamic regulation of HIV-1 capsid interaction with the restriction factor TRIM5α identified by magico-angle spinning NMR and molecular dynamics simulations*, *PNAS*, 2018. DOI: 10.1073/pnas.1800796115.

New Materials

M. Amrani et al., *CuBare, A Quasi Two-Dimensional Copper-Brmuth Nanosheet*, *Chem. Mater.*, 2017. DOI: 10.1021/acs.chemmater.7b03597
High-Level Architecture

- **Web Server Nodes**: (6) 6× AMD EPYC 7742 CPUs, 256GB RAM
- **Database Nodes**: (12) 12× AMD EPYC 7742 CPUs, 512GB RAM
- **Data Transfer Nodes**: (2) 2× Intel Xeon Platinum 8160M CPUs, 4TB RAM
- **Login Nodes**: (2) 2× Intel Xeon Gold 6248, 256GB HBM2, 512GB RAM
- **RM Nodes**: (488) 488× AMD EPYC 7742 CPUs, 256GB RAM
- **LM Nodes**: (16) 16× AMD EPYC 7742 CPUs, 512GB RAM
- **EM Nodes**: (4) 4× Intel Xeon Platinum 8160M CPUs, 4TB RAM
- **GPU Nodes**: (24) 24× NVIDIA V100-32 SXM-2, 2× Intel Xeon Gold 6248, 256GB HBM2, 512GB RAM

Interconnect

Tape Backup and Archive ~8.6PB usable

Parallel File System 15PB usable, 129GB/s R, 142GB/s W

Flash Array 100TB, 9M IOPs, 100GB/s

HPE DMF

Interconnect Management Nodes: (12)

Users, XSEDE, campuses, instruments
Building on the Flexible Architecture of *Bridges*
Introducing Innovations to Scale AI and High-Performance Data Analytics

Bridges-2 provides transformative capability for rapidly-evolving, computationally-intensive and data-intensive research, supporting new and existing opportunities for collaboration and convergence research.

Bridges-2 supports traditional and nontraditional research communities and applications, integrate new technologies for converged, scalable HPC, AI, and data; prioritize researcher productivity and ease of use; and provide an extensible architecture for interoperation with complementary data-intensive projects, campuses, and clouds.

Bridges-2 core concepts:
- Converged HPC + AI + Data
- Custom fat tree Clos topology optimized for data-centric HPC, AI, and HPDA
- Heterogeneous node types for different aspects of workflows
- CPUs and AI-targeted GPUs
- 3 tiers of per-node RAM (256GB, 512GB, 4TB)
- Extremely flexible software environment
- Community data collections & Big Data as a Service

Innovations beyond Bridges:
- AMD EPYC 7742 CPUs: 64-core, 2.25–3.4 GHz
- AI scaling to 192 V100-32GB SXM2 GPUs
- 100TB, 9M IOPs flash array accelerates deep learning training, genomics, and other applications
- Mellanox HDR-200 InfiniBand doubles bandwidth & supports in-network MPI-Direct, RDMA, GPUTDirect, SR-IOV, and data encryption
- Cray ClusterStor E1000 Storage System
- HPE DMF single namespace across disk and tape for data security and expandable archiving
Prioritizing Flexibility and Ease of Use

- Interactivity
- Popular languages and frameworks: Python, Anaconda, R, MATLAB, Java, Spark, Hadoop
- AI frameworks: TensorFlow, Caffe2, PyTorch, etc.
- Containers and virtual machines (VMs)
- Databases
- Gateways and distributed (web) services
- Large collection of applications and libraries
“Regular-Memory” (RM) and “Large-Memory” (LM) Nodes

Bridges-2 RM and LM nodes provide extremely powerful general-purpose computing and AI inferencing, with 128 cores per node and great memory bandwidth.

Each Bridges-2 RM node contains:

• 2× AMD EPYC “Rome” 7742 CPUs:
 • 64 cores, 128 threads, 2.25–3.40GHz, 256MB L3, 8 memory channels
• 488 RM nodes with 256GB of RAM
 16 LM nodes with 512GB of RAM
• DDR4-3200 memory
• 3.84TB NVMe SSD
• Mellanox ConnectX-6 HDR InfiniBand 200Gb/s Adapter.
“Extreme-Memory” (EM) Nodes

Bridges-2 EM nodes provide additional memory for applications such as genome sequence assembly and graph analytics.

- Each *Bridges*-2 EM node contains:
 - 4× Intel Xeon Platinum 8260M “Cascade Lake” CPUs:
 - 24 cores, 48 threads, 2.40–3.90GHz, 35.75MB LLC, 6 memory channels
 - 4TB of RAM: DDR4-2933
 - 7.68TB NVMe SSD
 - Mellanox ConnectX-6 HDR InfiniBand 200Gb/s Adapter.
GPU Nodes

BRIDGES-2

Bridges-2 GPU nodes provide exceptional performance and scalability for deep learning and accelerated computing.

Each *Bridges*-2 GPU node contains:

- 8× NVIDIA Tesla V100-32GB SXM2 GPUs:
 - 40,960 CUDA cores and 5,120 tensor cores;
 - 1 Pf/s tensor, 125 Tf/s 32b, 64 Tf/s 64b

- 2× Intel Xeon Gold 6248 “Cascade Lake” CPUs:
 - 20 cores, 40 threads, 2.50–3.90GHz,
 - 27.5MB LLC, 6 memory channels

- 512GB of RAM: DDR4-2933

- 7.68TB NVMe SSD

- 2× Mellanox ConnectX-6 HDR InfiniBand 200Gb/s Adapter.
Bridges-2 GPU Infrastructure

12 Mellanox HDR Quantum Spine Switches

All links in Bridges-2 are HDR-200

12 × HPE Apollo 6500 Gen10 Server
Each: 1Pf/s tensor, 125 Tf/s fp32, 64 Tf/s fp64

12 × HPE Apollo 6500 Gen10 Server
Each: 1Pf/s tensor, 125 Tf/s fp32, 64 Tf/s fp64
Bridges-2 filesystem (b2fs): Managed by HPE Data Management Framework (DMF) to provide a single namespace and user-friendly, rule-based migration.

ClusterStor E1000

- Lustre filesystem
 - 15 PB usable, 21 PB raw
 - 129 GB/s read, 142 GB/s write
 - RAIDZ2
 - 10 data server pairs, each serving 2.1 PB (raw)
 - To be allocated through XSEDE

- Flash Array
 - >100 TB usable, 9M IOPs
 - Use cases: training on large data, genomics, databases

HPE StoreEver MSL6480 Tape Library

- 5 modules (scalable to 7); 80 LTO-8 Type M tape slots per module
- 7.2 PB uncompressed, ~8.6 PB compressed
- 50 TB/hour
- Use cases: archiving, disaster recovery
- To be implemented as a resource to be allocated through XSEDE
- Option for external groups to fund project-specific expansion
“Prior to 2012, AI results closely tracked Moore’s Law, with compute doubling every two years. Post-2012, compute has been doubling every 3.4 months.”

Convolutional Neural Networks (CNNs)

![Image of CNNs]

Figure from S. Bianco, R. Cadene, L. Celona, and P. Napoletano, Benchmark Analysis of Representative Deep Neural Network Architectures, IEEE Access, vol. 6, pp. 64270–64277, 2018. arXiv:1810.00736v2.

Some Recent Transformer-type Networks

<table>
<thead>
<tr>
<th>Network</th>
<th>Published</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>BERT Large</td>
<td>October 11, 2018</td>
<td>340M</td>
</tr>
<tr>
<td>PEGASUS Large</td>
<td>December 18, 2019</td>
<td>568M</td>
</tr>
<tr>
<td>GPT-2 (48 layers)</td>
<td>February 2019</td>
<td>1.5B</td>
</tr>
<tr>
<td>Megatron-LM</td>
<td>August 13, 2019</td>
<td>8.3B</td>
</tr>
</tbody>
</table>

Sources of Additional Complexity

- Generative Adversarial Networks (GANs)
- Domain Adaptation
- Reinforcement Learning (RL)
AI and Data @ Bridges-2

Productivity

Usability

Interoperability
AI and Data @ Bridges-2

Productivity

Usability

Interoperability

AI @ Scale

Training
Support
Monitoring
AI and Data @ *Bridges*-2

Productivity

Usability

Interoperability

Diagram showing various tools and technologies related to AI and Data, including NVIDIA DIGITS, Caffe, PyTorch, Chainer, TensorFlow, Theano, mlflow, Jupyter, Spark, Anaconda, and more.
AI and Data @ *Bridges-2*

Productivity
Usability
Interoperability
Early User Program (EUP)

- Port, tune and optimize your application early and at no charge (There is also no charge for XSEDE allocations.)

- Achieve scientific progress early and at no charge

- User guide, frontline support and advanced support from Day 1

- Software and datasets most frequently used on Bridges will be pre-installed and ready from Day 1

- Please tell us about your specific software and dataset needs:
 https://psc.edu/bridges-2/software-request
 https://psc.edu/bridges-2/dataset-request

- For news updates, including on the opportunity to apply for access, please sign up at
 https://psc.edu/bridges-2/eup-apply
EUP Process and Feedback

• Access will be granted based on lightweight proposals submitted via XRAS (see next slides):
 • Supplements to active XSEDE grants
 • Startups for those with no active XSEDE grant

• We will provide a feedback collection widget on every page of the user guide. Please use it whenever you have an issue, question or comment on any aspect of your EUP experience.

• We will check in to ask you about your experience and progress once a week. Please share your insights as to how we can further improve Bridges-2.

• You will be asked to complete a short survey after 4 weeks of the EUP.

• Ideally, EUP activities will result in scientific progress.
Target Timeline

October 1, 2019 Award start date; preparatory activities begin
• System and user environment, documentation, content, dissemination, etc.
• Broadly invite researchers for the Early User Program

March 2020 XRAC proposals awarded for Bridges/Bridges-AI, extending into Bridges-2

June-July 2020 Accept initial round of XRAC proposals

Fall 2020 Delivery, installation, initial testing

Fall-Winter 2020 Early User Program, conclusion of Acceptance Testing

Q1 2021 Start of Bridges-2 Production Operations

Q1 2021 Transition from Bridges to Bridges-2
Summary

• *Bridges* pioneered AI, HPC, and Big Data, and through its heterogeneous, very flexible architecture, created a large community of nontraditional users and interoperating cyberinfrastructure.

• *Bridges*-2 will greatly extend these proven concepts with full-system HPAI, HDR-200 communications, a new all-flash array fast data, tiered data management, and enhanced cloud interoperability.

• Innovative User Support, including substantial development during Early Operations.

• Join us for the *Bridges*-2 Early User Program!
To Learn More and Participate

<table>
<thead>
<tr>
<th>Task</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watch the Bridges-2 website for updates!</td>
<td>http://psc.edu/bridges-2</td>
</tr>
<tr>
<td>Sign up for the Early User Program</td>
<td>https://psc.edu/bridges-2/eup-apply</td>
</tr>
<tr>
<td>Let us know what software (applications, libraries, frameworks) you’d like us to install.</td>
<td>https://psc.edu/bridges-2/software-request</td>
</tr>
<tr>
<td>Let us know what community datasets you’d like us to install.</td>
<td>https://psc.edu/bridges-2/dataset-request</td>
</tr>
<tr>
<td>XSEDE User Portal, to get an XSEDE username and to apply for free allocations on Bridges-2</td>
<td>https://portal.xsede.org/</td>
</tr>
<tr>
<td>Contact us with additional questions, input, or requests (starting June 1)</td>
<td>bridges2@psc.edu</td>
</tr>
</tbody>
</table>