Scattering phase shifts and the spectrum of excited states in lattice QCD using the stochastic LapH method

C. Morningstar
Dept. of Physics,
Carnegie Mellon University,
Pittsburgh, PA 15213, USA

J. Bulava
CERN, Physics Dept.,
CH-1211 Geneva 23,
Switzerland

J. Foley
Dept. of Physics and Astronomy,
University of Utah,
Salt Lake City, UT 84112, USA

K.J. Juge
Dept. of Physics,
University of the Pacific,
Stockton, CA 95211, USA

C.H. Wong
Dept. of Physics,
U. of California, San Diego,
La Jolla, CA 92093, USA

B. Fahy, Y.C. Jhang, D. Lenkner
Dept. of Physics,
Carnegie Mellon University,
Pittsburgh, PA 15213, USA

ABSTRACT
Our first results for the mass spectrum of excited mesons and light meson scattering phase shifts are presented. Our results are obtained from the temporal correlations of quantum-field operators in quantum chromodynamics (QCD). The correlations are determined using Markov-chain Monte Carlo estimates of QCD path integrals formulated on an anisotropic space-time lattice. To reliably determine the excited states of interest, we use both single-hadron and multi-hadron operators for the first time. A new stochastic method of treating the low-lying modes of quark propagation which exploits a new procedure for spatially-smearing quark fields, known as Laplacian Heaviside smearing, makes such calculations possible for the first time. Our results are obtained using $24^3 \times 128$ and $32^3 \times 256$ anisotropic lattices. The method provides reliable estimates of all needed correlations, even those that are particularly difficult to compute, such as $\eta \eta \to \eta \eta$ in the scalar channel, which involves the subtraction of a large vacuum expectation value. A new glueball operator is introduced, and computing the mixing of this glueball operator with a quark-antiquark operator, $\pi \pi$, and $\eta \eta$ operators is shown to be feasible.

Categories and Subject Descriptors
J.2 [Physical Sciences and Engineering]: Physics

General Terms
Algorithms

Keywords
ACM proceedings, Lattice QCD, Monte Carlo simulations, Hadron Physics

1. ACKNOWLEDGEMENTS
This work was supported by the U.S. NSF under awards PHY-0510020, PHY-0653315, PHY-0704171, PHY-0969863, and PHY-0970137, and through TeraGrid/XSEDE resources provided by TACC and NICS under grant numbers TG-PHY100027 and TG-MCA075017. Computing, storing, and manipulating the quark sinks and the meson/baryon functions is possible only because of current XSEDE computing and storage capabilities.

2. REFERENCES